If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4+6x+2x^2=0
a = 2; b = 6; c = +4;
Δ = b2-4ac
Δ = 62-4·2·4
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2}{2*2}=\frac{-8}{4} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2}{2*2}=\frac{-4}{4} =-1 $
| 4-3k=-2 | | X+y+9y=180 | | -2(x-5)-(2-4x)=16 | | (n)=4.5n-8 | | 6x2+24x-413=0 | | 0.5p=5+5 | | –4k=–3k−6 | | 5.3n-1.6=2.8n+59 | | 3x-20=-31 | | -3(n+8$-4+n=-40 | | -12+9x=60+60 | | D(p)=10p^-2 | | 12x-1=4x^2 | | 6b-11-5b=-3 | | 6a2=7 | | 4x+2(x+5)=3(6x-4) | | 3^4x+3^2x-6=0 | | 44+104+18+17x=180 | | 5n+3-8n=15 | | X^2+10+8=x | | 3x+6+90+x=90 | | 2(4x+8)=15x+6-7x+10 | | 20x-3=5(4x+2) | | -8/9=-16/c | | 3x-40=61 | | 10-6x=10(10x+1) | | 2(3x+3)+93=11x+1-5x+98 | | 3t+40=61 | | 2t+61=40 | | X+3y-8=180 | | 10−9b=–10b | | (9n+5)-(3n-7)=20(4n-2) |